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Abstract

We discuss the close connection between eigenvalue computation and optimization using
the Newton method and subspace methods. From the connection we derive a new class of
Newton updates. The new update formulation is similar to the well-known Jacobi-Davidson
method. This similarity leads to simplified versions of the Jacobi-Davidson method and the
inverse iteration generalized Davidson (IIGD) method. We prove that the projection sub-
space augmented by the updating direction from each of these methods is able to include the
Rayleigh quotient iteration (RQI) direction. Hence, the locally quadratic (cubic for normal
matrices) convergence rate of the RQI method is retained and strengthened by the subspace
methods. The theory is supported by extensive numerical results. Preconditioned formula-
tions are also briefly discussed for large scale eigenvalue problems.
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1 Introduction

We study subspace methods for the standard eigenvalue problem

Ax = λx, (1)

where A is an n by n matrix, λ is the eigenvalue and x is the corresponding eigenvector.
Eigenvalue problem (1) is central to many scientific applications. Several excellent monographs
[2, 3, 5, 13, 27, 30, 40, 42] contain in-depth discussions on properties and algorithms for eigenvalue
problems, together with many sources from science and engineering applications.

Subspace methods include the Arnoldi method [1], Lanczos method [20] and the more so-
phisticated but important variants, the implicit restart Arnoldi method [35] and the rational
Krylov method [29]. Other important subspace methods include the Davidson method [7],
Jacobi-Davidson method [32, 33, 16], Krylov-Schur method [41], truncated RQ method [37, 45],
and preconditioned subspace eigensolvers [4, 12, 14, 18, 19, 22, 38].
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In this paper we study mainly the Jacobi-Davidson type subspace methods for (1). We
highlight the connection between eigenvalue computation and optimization; the crucial link is
the Newton method for Rayleigh quotient combined with subspace techniques. This link is well
known and is central to the success of several eigensolvers, for example, the Davidson method
and Jacobi-Davidson method. But often the connection to the Newton method is emphasized,
which is used to account for the (locally) fast convergence property of the eigensolvers. The
importance of subspace methods is no doubt well known. But we feel the following discussion
may still contribute to the understanding of the Newton method applied within a subspace
approach. We try to emphasize the subspace approach.

We begin the discussion from optimization. The traditional optimization algorithms are
often one dimensional; that is, at each iteration step, the optimization is done within a one
dimensional space. As an example we look at the Newton method for

min
x

f(x), x ∈ Rn, (2)

where f : Rn → R is assumed to be twice continuously differentiable. At step k we obtain an
approximate minimizer xk. Then we solve the Newton correction equation:

[
∇2f(xk)

]
δxk = −∇f(xk). (3)

The approximate minimizer at step k + 1 is updated from xk and δxk as

xk+1 := xk + αk δxk, (4)

where αk is some line search parameter obtained by an approximate minimization; αk = 1 is
the standard Newton method. Often the Armijo-Goldstein condition or Wolfe condition [10]
is used to ensure global convergence (without line search and other globalization techniques
Newton method may converge to local maximal or saddle point). In other words, the minimizer
is sought within a one dimensional space span{δxk} with affine translation xk.

The key advantage of a subspace approach is that the convergence may be more robust and
the convergence rate may be faster than that of a single vector update approach. This may be
seen clearly from the following: Instead of looking for a minimizer within a one dimensional space
S1, we look for a minimizer within a multidimensional subspace Sk that contains S1 as its sub-
space; hence the minimum in Sk must be no greater than the minimum in S1. Again we use the
Newton method for (2) as an example. At step k+1, instead of looking for a single vector update
(4), we augment the subspace by the computed Newton direction (i.e., span{x1,x2, ...,xk, δxk}).
Then we look for a minimizer x̃k+1 within this augmented subspace. Then it is very clear to
see that f(x̃k+1) ≤ f(xk+1). By augmenting the subspace in this way, we retain the locally fast
convergence property of the Newton method. A second advantage of the subspace approach is
for clustered eigenvalues. Since even for the symmetric case the gap theorem [27] tells us that
a single vector approach (without deflation) will not lead to a meaningful eigenvector, we have
to compute the invariant subspace related to the clustered eigenvalues. Another advantage of
the subspace approach is that one can seek more than one optimizer by working with different
subspaces. This feature is particularly important for eigenvalue computation because one often
needs a portion of the spectrum and the related eigenvectors instead of a single eigenpair.
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Clearly the advantage of subspace technique is not gained without price. At each iteration
of a subspace method one has to do more matrix vector products. And since orthonormal
basis is numerically more stable than non-orthonormal ones, one needs to orthonormalize the
new direction against the former subspace basis. These imply that the subspace dimension can
not be large for large scale problems. To gain efficiency, one often needs to do restart and
deflation [13, 30, 35, 40]. Restart is an indispensable technique which ensures that the starting
vector becomes progressively better, so that the convergence becomes faster and the subspace
dimension is kept relatively small to n. Deflation is also important with subspace methods.
It tries to fix converged eigenvectors so that they will not be recomputed; and by using only
vectors orthogonal to the converged eigenvectors to augment the projection basis, the projection
subspace will be augmented in a more efficient way.

The important link between the eigenvalue problem (1) and optimization is the following
nonlinear function called the Rayleigh quotient:

Q(x) =
x∗Ax
x∗x

, ∀x (= 0. (5)

For symmetric or Hermitian A, minx Q(x) or maxx Q(x) gives the extreme eigenvalue of A. For
general matrix A, the Rayleigh quotient defines the field of value [15, 17]:

F(A) := {Q(x) | x ∈ Cn\{0}} .

If A is normal, then F(A) is the convex hull of the eigenvalues of A. In general F(A) contains
the spectrum of A. With suitable subspaces one can locate the eigenvalues of A via Rayleigh
quotient; this is the well known Rayleigh-Ritz procedure. Certainly when the eigenvalues are
located in the complex plane, the optimization interpretation becomes obscure, since one can
not compare complex values. However, if we interpret optimizers not only as the end points of
an interval in R but also as the boundary of a region in C, then the optimization interpretation
still makes sense. As an example of this interpretation we look at the Lanczos- or Arnoldi-type
algorithms. It is well known that these algorithms usually approximate the exterior eigenvalues.
Since the subspace at each iteration essentially contains the residual rk = Axk − λkxk, for
symmetric problems rk is in the direction of the gradient of (5) at xk (i.e., the steepest descent
or ascent direction). For nonsymmetric problems rk may not be readily considered as gradient
since Q(x) may not be differentiable [26], but it is likely that the subspace augmented by xk

contains the steepest descent or ascent direction (measured by vector norm) of Q(x). This can
also be considered as the advantage of the subspace approach: one does not have to compute the
exact direction directly, but the span of the vectors contains the best direction. In this vein of
thought, there would be no surprise that the algorithms converge to the exterior eigenvalues—
the optimizers in the complex plane. As for interior eigenvalues, the common approach is to
apply shift and invert, that is, to map the interior eigenvalues of the original matrix into extreme
eigenvalues of a transformed matrix, and then apply standard solvers to the transformed matrix.

Some notations: Throughout this paper we use boldface letters for matrices and vectors.
The upper script ()∗ denotes the transpose ()T in the real case, and the conjugate transpose ()H

in the complex case.
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2 Subspace Eigensolvers: Davidson and Jacobi-Davidson

The Davidson method and Jacobi-Davidson method are two of the typical examples of subspace
methods for eigenvalue computation. Before getting into details we present the framework of
subspace methods for the eigenvalue problem (1) in Algorithm 2.1, where for simplicity we
assume that A = A∗ and that only the smallest eigenvalue and its corresponding eigenvector
are sought. Note that the optimization within a subspace is done at step 5(e).

Algorithm 2.1 Framework of subspace methods for the eigenvalue problem (1):

1. Start with an initial unit vector x, V1 ← [x].

2. Compute w = Ax, W1 ← [w].

3. Compute λ = H1 = x∗w, r = w − λx.

4. If ‖r‖ <= ε, return (λ,x) as the eigenpair.

5. Outer Loop: for j = 1, 2, ...,m do

(a) Call specific subspace method to construct an augmentation vector t.

(b) Orthonormalize t against Vj to get a unit vector v.

(c) Compute w = Av, Wj+1 ← [Wj | w], Vj+1 ← [Vj | v].

(d) Compute
[

h
α

]
= V∗

j+1w, Hj+1 =
[

Hj h
h∗ α

]
.

(e) Compute the smallest eigenpair (λ,y) of Hj+1. (‖y‖ = 1).

(f) Compute the Ritz vector x = Vj+1y
and the residual vector r = Ax− λx = Wj+1y − λx.

(g) Test for convergence: if ‖r‖ <= ε, return (λ,x) as the eigenpair.

6. Restart: Set V1 = [x], W1 = [Wj+1y], H1 = [λ], goto step 5.

Note also that the stopping criterion ‖r‖ <= ε is in the relative sense; i.e., ε is related to the
computed Ritz values. This is more important to the nonnormal problems. For A (= A∗, one
can easily adapt the framework by modifying step 5(d) as

Hj+1 =
[

Hj V∗
jw

v∗Wj v∗w

]
,

note only the h∗ term at step 5(d) needs to be changed into v∗Wj . If more eigenpairs are
required, one can compute eigenpairs of Hj+1 according to different selection criteria at step
5(e). The selection criteria include the first l (l ≥ 1) eigenvalues of the largest or smallest real
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parts, imaginary parts or magnitudes. Then at step 5(a) one computes the augmentation vectors
from the residual vectors related to the selected eigenpairs of Hj+1.

The other important numerical step is the orthogonalization at step 5(b). A common choice
is the modified Gram-Schmidt (MGS) method. MGS is in practice much more stable than Gram-
Schmidt (GS), but the orthogonality of the basis constructed by MGS depends on the condition
number of the original set of vectors. Another problem is that MGS can not be expressed by
Level-2 BLAS, hence parallel implementation needs more communication [2, 11]. Another choice
for orthogonalization is the DGKS correction [6]. DGKS can be implemented more efficiently in
parallel because DGKS is actually GS with selective reorthogonalization. To make t orthogonal
to Vj we do the following,

ttmp ← V∗
j t, vj+1 ← t−Vjttmp, vj+1 ←

vj+1

‖vj+1‖
, (6)

if (‖ttmp‖ > tol ∗ ‖vj+1‖) then do the reorthogonalization :

ttmp ← V∗
jvj+1, vj+1 ← vj+1 −Vjttmp, vj+1 ←

vj+1

‖vj+1‖
, (7)

where the criteria means that if the angle between ttmp and vj+1 at line (6) is smaller than
actan(tol), then reorthogonalization is necessary.

The subspace dimension and the convergence rate are a big concern for large scale problems.
For subspace eigensolvers the convergence rate often depends heavily on the quality of the
starting vector. Restart can be used to refine the starting vector. We know that before restart,
useful information may have been accumulated in the recent expansion vectors. Thus it may
not be desirable to keep only the most recent expansion vector and throw away all the rest. In
[39, 44] thick restart techniques are proposed. The idea is to keep as much useful information as
possible by keeping more than one expansion vector at the first step of restart. This idea has
proved to be efficient and easy to incorporate into the framework.

What distinguishes each subspace method is the vector augmentation at step 5(a). When
iterative methods (e.g., GMRES [31], BICGSTAB [46]) are used to solve for the augmentation
vector, step 5(a) necessarily contains the inner iteration of the subspace methods.

The Davidson method [4, 7, 22, 30] constructs t as follows:

5(a) Construct preconditioner Mj ; solve for t from:

(Mj − λI) t = −r.

In the original paper by Davidson [7], Mj = diag(A). Originally Davidson derived this formula-
tion by taking the derivative of Q(xj), varying only the i-th component of xj (denoted as xj(i))
each time:

∂Q(xj)
∂xj(i)

∣∣∣∣
xj(i)+δxj(i)

= 0, i = 1, 2, ..., n. (8)

From (8) we get δxj(i) = (λj−aii)−1(Axj−λjxj)(i). In [8] Davidson related this formulation to
the Newton method. It was observed that the convergence rate is related to how well the diag-
onal matrix diag(A) approximates A. For example, if A is diagonally dominant (in eigenvalue
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problems, diagonal dominance means that the off-diagonal elements are small compared with
the changes in magnitude between diagonal elements [42, 22, 38]), then the Davidson method
converges very fast. Hence the diagonal matrix (diag(A)−λjI) was considered as a straightfor-
ward preconditioner to A − λjI. The main advantage of a diagonal preconditioner is that the
preconditioned system (which is diagonal) is trivial to solve, but it requires A to be diagonally
dominant. More sophisticated preconditioners than the diagonal matrix have been tried [4, 22],
leading to the so called generalized Davidson method. As has been pointed out (e.g., in [32]),
the preconditioner interpretation does not explain the improved convergence rate well since the
exact preconditioner (A − λjI)−1 leads to stagnation ((A − λjI)−1r is xj , which lies in the
original projection subspace).

The Jacobi-Davidson method [32] is an important advance for subspace methods in eigen-
value computation. At each iteration the correction vector t is required to reside within the
orthogonal complement of the existing projection subspace. Jacobi-Davidson solves the follow-
ing projected equation:

5(a) Solve (approximately) for t s.t. t ⊥ x and

(I− xx∗)(A− λI)(I− xx∗)t = −r. (9)

Usually (9) is solved inexactly by iterative methods. The matrix (I−xx∗)(A−λI)(I−xx∗)
is always singular, but this singularity poses no essential difficulty to iterative methods for (9).

Existing preconditioners for linear systems may be applied when solving (9) iteratively.
This is regarded as one of the major advantages of (Jacobi-)Davidson-type subspace methods,
since preconditioners may not be easily incorporated into the Arnoldi-type methods. Rational
Krylov-type or (single vector) RQI-type methods often require rather exact system solves, while
(Jacobi-)Davidson-type methods allow approximate system solves.

An equivalent formulation to (9) is the inverse iteration generalized Davidson (IIGD) method
by Olsen et al [24]. IIGD solves

(A− λI)t = −r + xτ, (10)

where τ is set to ensure t ⊥ x, i.e., τ = x∗(A−λI)−1r
x∗(A−λI)−1x . From (10) it is clear that the expansion

vector t contains information in both directions (A− λI)−1r and (A− λI)−1x. In the original
paper [24] the authors dealt with a huge problem at that time and they could not afford the
subspace approach; hence they ended up using single vector updating approach in their program
(this is also pointed out in [41]).

In [34] and [24] it was argued that Jacobi-Davidson and IIGD are (inexact) Newton-Raphson
methods. The generalized Rayleigh quotient Q(x,y) := x∗Ay

x∗y was used in [34] to establish the
argument. In the following section we derived a Newton update straightforwardly from the
standard Rayleigh quotient (5).

3 A New Class of Newton Update

The locally fast convergence property of the Newton method in optimization is an attractive
feature for designing fast algorithms. Davidson, Jacobi-Davidson and IIGD methods all tried

6



to establish a connection to Newton method to explain their fast convergent behavior. Yet no
Newton method combined with subspace projection applied directly to the Rayleigh quotient
(5) seems to have been tried. In this section we establish this interesting application.

We assume that A∗ = A. (This is not for notational simplicity reason, since the nonnormal
case may be completely different.) The gradient of the Rayleigh quotient (5) is

∇Q(x) =
2Ax
x∗x

− 2x∗Axx
(x∗x)2

=
2

x∗x
(Ax−Q(x)x). (11)

The Hessian of (5) is

∇2Q(x) =
2Ax
x∗x

− 4Axx∗

(x∗x)2
− 2

xx∗
(x(∇Q(x)∗) + Q(x)I) +

4
(x∗x)2

(Q(x)xx∗)

=
2

x∗x
(A−Q(x)I)− 2

x∗x
(x(∇Q(x)∗) + (∇Q(x))x∗)

=
2

x∗x
(A−Q(x)I)− 4

(x∗x)2
(Axx∗ + xx∗A∗ − 2Q(x)xx∗). (12)

This seemingly complicated formula can be simplified. If we assume x is already normalized
and denote λ = Q(x), then

∇2Q(x) = 2(A− λI)− 4(Axx∗ + xx∗A∗ − 2λxx∗). (13)

So the Newton equation ∇2Q(x)t = −∇Q(x) is

[(A− λI)− 2(Axx∗ + xx∗A∗ − 2λxx∗)]t = −(Ax− λx) = −r. (14)

To see the relation with the Jacobi-Davidson equation (9), we expand the matrix in the left
hand side of (9) and get: (note x∗x = 1)

[(I− xx∗)(A− λI)(I− xx∗)]t
= [(A− λI)− (Axx∗ + xx∗A− 2λxx∗)]t = −r. (15)

From (14) and (15) we see the essential difference is that the scaling of the correction term
(Axx∗ + xx∗A∗ − 2λxx∗) to (A− λI) in (14) is twice as much as the one in (15). The formula
we derived here is Newton method, hence it preserves the locally quadratic convergence rate.
No additional treatment is needed to establish the connection to the Newton method.

Our new algorithm using Newton direction within the subspace method framework (Algo-
rithm 2.1) may be stated as follows:

5(a) Solve (approximately) the following equation for t ⊥ x:

( A− λI− 2(Axx∗ + xx∗A∗ − 2λxx∗) )t = −r (16)
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In nonlinear optimization, the Hessian matrix is often difficult to obtain, hence low rank
updates such as DFP and BFGS are used to obtain approximate Hessian matrix, resulting in
the Quasi-Newton methods with a super linear convergence rate. For eigenvalue computation,
the situation is better because we can compute the explicit Hessian of the Rayleigh quotient.
Actually in [43] the correct Hessian was derived, but the formula in [43] was not simplified and
it was more complicated than (12); hence the authors did not try applying Newton method
to the Rayleigh Quotient, while they proposed other very neat Newton-type methods based on
transformed formulations of the eigenvalue problem.

The other difference between (14) and the Jacobi-Davidson equation (15) is that the xx∗A∗

term in (16) is xx∗A in (15). This certainly makes no difference under the assumption A = A∗.
Actually under this assumption, equation (16) is equivalent to:

(I− 2xx∗)(A− λI)(I− 2xx∗)t = −r. (17)

This looks very similar to the Jacobi-Davidson equation (9). We note that (15) was derived from
computational insight (where the idea of the Jacobi orthogonal component correction is exploited
as the orthogonal projector). We will discuss later that this is the truly valuable insight that
makes the Jacobi-Davidson to be so efficient. While (17) is derived rigorously by the Newton
method. The major difference is that (I− 2xx∗) is perfectly conditioned since (I− 2xx∗)2 = I
(I − 2xx∗ is also called the Householder reflector), while the orthogonal projector (I − xx∗) is
singular. Hence, away from an eigenvalue, (17) is better conditioned than (15). When near
an eigenvalue λ, both (15) and (17) relate to the inverse iteration on (A − λI). As discussed
in [27, 28], the ill-conditioning of (A − λI) does not prevent computing the direction of the
eigenvector for λ correctly.

For large scale problems, computing the Newton direction exactly is usually not practical.
Equation (17) need to be replaced by some preconditioned equation. We can incorporate pre-
conditioners in the same way as the generalized Davidson method or Jacobi-Davidson method
does. I.e., if we construct a good preconditioner Mj at step j, then we solve the following:

5(a) Applying preconditioner Mj , solve the following equation for t ⊥ x:

(I− 2xx∗)(Mj − λI)(I− 2xx∗)t = −r. (18)

If the formulation in (16) is preferred, then we solve for t ⊥ x from

( Mj − λI− 2(Axx∗ + xx∗A∗ − 2λxx∗) )t = −r. (19)

In both formulations (18) and (19), we may apply the easily available diagonal preconditioner
Mj = diag(A). We note that they now can not be solved as trivially as diagonal systems. We
also note that (19) contains more information about the original A than does (18).

The overhead caused by the correction terms in (18) or (19) is marginal for iterative methods
because one mainly computes the approximate solution by matrix-vector products. But we point
out that the condition number of the matrix (which need not be formed explicitly) affects the
convergence rate of any iterative method. For eigensolvers that utilize preconditioners from
linear systems directly, another complication may occur, as pointed out in [36], that a good
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preconditioner Mj for A (such as preconditioners from multigrid method) need not necessary
be a good preconditioner for A − λI or other modifications to A. We also note that the
interpretation of conditioning is different between linear systems and eigenvalue problems: for
linear system, the conditioning depends solely on σmax/σmin where σ denotes the singular value;
while for eigenvalue problems, each eigenvalue has its own conditioner number and the separation
of eigenvalues is closely related to the convergence rate of eigensolvers.

Note that r = Ax − λx is computed at each step of the Davidson-type methods. If λ ∈ R,
the three correction terms in (16) and (19) may be simplified into two terms:

Axx∗ + xx∗A∗ − 2λxx∗ = rx∗ + xr∗. (20)

This simplification makes updating the matrix vector products at each iteration easier, and we
use it in our code for the numerical tests.

4 Unification of Jacobi-Davidson, IIGD and Newton Updates
via RQI

In large scale eigenvalue computation, solving preconditioned system (inexactly) via iterative
methods is a crucial part for most of the fast eigensolvers. We see from Section 3 that when
suitable correction equations are found, preconditioners may be readily adapted into the existing
subspace methods by modifying the correction equations. Hence in the rest of this paper we
concentrate on the derivation of the correction equations, without being distracted by precon-
ditioners.

When we talk about fast convergent algorithms for eigenvalue problems, an important can-
didate that comes to mind is the Rayleigh quotient iteration (RQI). RQI is cubic convergent
for normal matrices and quadratic convergent for nonnormal matrices [26]. Extensive studies of
RQ and RQI exist. Properties of RQI and different type of generalizations may be found, for
example, in [9, 23, 25, 26, 27, 40] and references therein.

In the following we unify the Jacobi-Davidson, IIGD and the proposed methods in Section 3
by RQI. This unification leads us to propose a simplified version of the Jacobi-Davidson method
and a simplified IIGD method. We first establish the following theorem.

Theorem 4.1 Let the initial unit vector be the same x, assuming the Rayleigh quotient λ =
x∗Ax is not an eigenvalue of A yet. Then the subspace method with equation (9) or (10) or
(17) each produces a subspace that includes the RQI direction during the next iteration.

Proof: The subspace method with updating equation (9) or (10) or (17) is a special case of
the following (with suitable α and β):

5(a) Solve (approximately) the following equation for t ⊥ x:

(I− α xx∗)(A− λI)(I− β xx∗)t = −r, ∀ α (= 0. (21)

We now prove the following stronger statement: Solving (21) for t ⊥ x, then the subspace
augmented by t will include the RQI direction during the next iteration.
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It is well known that during the next iteration, RQI produces the direction

xR = (A− λI)−1x.

Under the restriction x∗t = 0, equation (21) becomes

(A− λI)t = −r + η x. (22)

This is actually the IIGD equation. From (22)

t = (A− λI)−1r + η (A− λI)−1x = −x + η xR, (23)

where η = 1/(x∗xR) is chosen to ensure x∗t = 0. Note that x is in the original projection
subspace, say, Vj . We see that the RQI direction xR will be included in the augmented projection
subspace Vj+1 when we carry out 5(b) in Algorithm 2.1.

This theorem shows that the subspace method with (21) is able to retain the desirable fast
convergence property of RQI. As discussed in the introduction section, the subspace approach
possibly converges faster than RQI, and it also possesses the other advantages of a subspace
method over a single-vector method.

Formula (21) may be linked to the Newton method in other ways. From (21) and x∗t = 0
we see

(I− α xx∗)(A− λI)t = −r.

This leads to:
(A− λI)t− η x = −r, x∗t = 0. (24)

Equation (24) is equivalent to the following bordered equation:
[

A− λI −x
−x∗ 0

] [
t
η

]
=

[
−r
0

]
. (25)

This bordered equation also appears in [28, 43] where Newton method is applied to the following
nonlinear equation: {

(A− λI)x = 0,
−1

2x
∗x + 1

2 = 0.
(26)

The bordered matrix turns out to be the Jacobian matrix of (26). The Newton correction
equation to (26) is exactly (25). From this point of view, each of the algorithms — Jacobi-
Davidson, IIGD and the generalized form (21) — can be viewed as a Newton method for (26)
carried out with subspace acceleration. A hidden reason for the success of the Jacobi-Davidson

and IIGD methods may be that the bordered matrix
[

A− λI −x
−x∗ 0

]
is generally nonsingular

(even when λ is a simple eigenvalue of A). The nonsingularity was first proved in [28]. In actual
computations one does not need to form the bordered matrix. Discussion of the preconditioned
form of (25) may be found in [36].

We prefer unifying the methods by RQI instead of by the Newton method, since the con-
vergence rate for RQI is locally cubic for normal matrices and locally quadratic for nonnormal
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matrices. Whereas the Newton method usually explains only the locally quadratic convergence
rate for both cases.

As seen from the proof, the fast convergence rate of these methods depends mainly on
including the RQI direction to augment the projection subspace. This fact is well known for the
Jacobi-Davidson method. But to cast it in a more general setting as we did here is new. Also,
the proof leads to other interesting observations, which we discuss in the next section.

5 Simplification of Jacobi-Davidson and IIGD

A more critical look at the proof of Theorem 4.1 reveals that the constants before the correction
terms in (9) and (17) (hence also (16)) surprisingly seem not essential in establishing the link to
RQI. As seen from (21), any nonzero α seems to work. The arbitrary choice of the parameters
(α, β) in (21) may be convenient for algorithm design, but certainly it is not mathematically
pleasant.

The difference may be that from (21) to (22) we require both x∗t = 0 and implicitly η =
α x∗(A − λI)t = 1/(x∗xR). This implies that different choices of α (and possibly β) may not
be equivalent. But this explanation does not go further.

We have determined, through extensive numerical experiments, that α = 1 in (21) is the
most essential character that leads to the success of the Jacobi-Davidson method. In the Jacobi-
Davidson method [32], α = β = 1 is inspired by the Jacobi orthogonal component correction.
This construction is indeed of deep computational insight. While in (17), α = β = 2 is derived
from the Newton method for the Rayleigh quotient of A(= A∗). Even though (I − 2xx∗) is a
perfectly conditioned matrix, without the additional restriction x∗t = 0, (16) and (17) generally
converge more slowly than do the Jacobi-Davidson and IIGD. At first sight this may seem
questionable because from Theorem 4.1 all the methods should be equivalent. The explanation
is that multiplying (A−λI)t = −r by perfectly conditioned matrices may not move the solution
t away from the direction of x; hence the stagnation for the perfectly preconditioned Davidson
method may also happen to (16) and (17), though not as seriously. Additionally requiring
t ⊥ x, if done after solving the correction equations (16) or (17) by direct methods, may lead
to a poor quality t. In this case, often the DGKS method at step 5(b) is not enough to ensure
orthogonality. One would have to perform three steps of Gram-Schmidt orthogonalization,
which often results in a vector that does not augment the projection subspace efficiently. If the
t ⊥ x is enforced at each step of any iterative methods for (16) or (17), then from the equality
(I − xx∗)(I − γxx∗) = (I − γxx∗)(I − xx∗) = (I − xx∗), for ∀γ, we see that (16) and (17) are
essentially Jacobi-Davidson.

As seen from Algorithm 2.1, after solving the correction equation for t in step 5(a), this t
is orthonormalized against a subspace that contains x. Hence, theoretically speaking, requiring
t ⊥ x at step 5(a) is not necessary; but for numerical reasons, especially when iterative methods
are used to solve the correction equation, it may be necessary to orthogonalize the solution t
against x once in a while or at every step of the inner iteration (as suggested in [32]).

We found out that choosing α = 1 in (21) is crucial in moving t sufficiently away from the
direction of x. While the value of β does not appear to be important, it may be set to any value
not too large as to lead to overflow. For cost-effective reasons, we may set β = 0 and simplify
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the Jacobi-Davidson method as follows:

5(a) Solve (approximately) for t s.t. t ⊥ x and:

(I− xx∗)(A− λI) t = −r. (27)

Note that (27) implies
(I− xx∗)(A− λI) t = −(I− xx∗)r,

so we actually solve the equation from a right hand side vector orthogonal to x.
For A (= A∗, the unsymmetric matrix in (27) may not cause objection. For A = A∗, it may

suggest that the symmetric matrix in (9) would be preferred. We show by extensive numerical
experiments that for both the symmetric and unsymmetric cases, if direct methods are used to
solve (27) and (9), then the cheaper (27) performs as well as (9). We point out that if iterative
methods are used to solve (27) and the solution at each step is orthogonalized to x, then (27)
is the same as the original Jacobi-Davidson method. The excellent numerical behavior of direct
methods for (27) suggests that in iterative methods, the orthogonalization of the solution to x
may be carried out after several iteration steps instead of after each step.

One advantage of Jacobi-Davidson over IIGD is that IIGD requires two system-solves per
inner iteration, which is more expensive than the one system-solve Jacobi-Davidson.

Also from (23) in the proof of Theorem 4.1, we see that in order to capture the fast conver-
gence property of RQI and to move t away from the x direction, the η should not be too small.
And (23) suggests the following simplified IIGD, which requires only one system-solve:

5(a) Solve (approximately) for t from:

(A− λI) t = x, (28)

Compute the constant η = 1/(x∗t), then assign t← (ηt− x).

This modification is simple. Other researchers may have noticed similar equivalent formulas
several years ago, but to our knowledge, to explicitly propose solving the IIGD equation by this
one-solve approach is new, and no numerical results seem have been published that compare the
one-solve approach with the mainly used two-solve approach. Our modification actually saves
almost half the computational cost at each inner iteration of IIGD. Even with one less system-
solve, it produces a t that is readily orthogonal to x (even when (A−λI)−1x makes a small angle
with x. This is an improvement on the observation 4.1.(c) in [32]). Both the above analysis
and the extensive numerical experiments that we performed show that (28) works as well as
the IIGD. Because of the reduced (often near-singular) system solves, (28) can be expected to
perform better than (10). Most important, it is the least expensive method but equally efficient
to Jacobi-Davidson and IIGD.

We note that existing preconditioned methods for linear systems may be easily incorporated
into (27) and (28). We use (28) as an example: If at step j we have a good preconditioner Kj

for (A− λjI), then we solve Kjt = xj and compute η = 1
x∗j t . Then the updating vector can be

obtained by (ηt− xj), which is always orthogonal to xj — the direction we are interested in to
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augment the projection basis. The significance of (28) may be seen from the following: If we stick
to the preconditioned form of (10) (i.e., Kjt = −rj + ηxj), then two preconditioned equations

would have to be solved for the orthogonalization constant η (η =
x∗jK

−1
j rj

x∗jK
−1
j xj

) since K−1
j rj may

not be equal to xj . But our modified scheme (28) aptly reduced the two system-solves into one
system-solve, even for the preconditioned formulation.

6 Numerical Results and Discussions

The purpose of this paper is not to present actual implementations of solvers for large scale
eigenvalue problems. Our purpose is to study the efficiency of different correction equations.
Different preconditioning techniques may be applied readily after the correction equations are
derived. Currently one of the most efficient and well known eigensolvers is the Jacobi-Davidson
method (9). IIGD (10) is equivalent to Jacobi-Davidson and is well known in the computational
chemistry community. We propose the generalized form (21). In this section we present nu-
merical behavior of the more specific forms (16), (17), (27) and (28), with comparisons among
themselves and to the well known (9) and (10). In the result-plot Figures, N1 and N2 denote
(16) and (17), respectively; JD and IIGD denote (9) and (10), respectively; and JDm and IIGDm
denote the modified forms (27) and (28), respectively.

The numerical experiments were done by using Matlab v6.5 on Pentium IV PCs with OS
Linux Redhat7.3. The models are restricted to relatively small scale problems (200 ≤ n ≤ 1000).
We use direct methods (Matlab “\”) to solve the correction equations, since for matrices of this
scale “\” is often at least ten times faster and more accurate than iterative methods. We note
that when M is singular, M\r give the solution M+r where M+ is the pseudo-inverse of M.

As pointed out in Section 5, in Algorithm 2.1, the solution t from step 5(a) is made orthogonal
to x in step 5(b). Hence, for the Jacobi-Davidson type equations (9), (16), (17) and (27), we did
not additionally require t ⊥ x in step 5(a). This modification will tell which equation would
naturally provide a solution that can augment the subspace efficiently.

We tried the methods on models from the Matrix Market.1 Models from this website are
often related to realistic and difficult problems. For all the tests we chose relative tolerance
tol = 10−10 as the stopping measure for the residual norm. We report results for the mod-
els: bwm200, ck400, pde225, pde900, rdb200, rdb450, rdb968, rw496. The name of each
model is listed in the first term at the title of each subgraph. These models may be retrieved
easily by searching for eigenvalue problems in Matlab format at the Matrix Market website.
The physical meaning of these models may be found at the same website. The mode denotes
the eigenvalue selection criteria, where LR, LM, SR and SM stand for largest real part, largest
magnitude, smallest real part and smallest magnitude, respectively. The modes were chosen
according to the description of each model. Since there are fewer symmetric standard eigen-
value problems in Matlab format at Matrix Market, we also applied the methods to matrices
(A + A∗)/2 when A (= A∗. We note that this simple symmetrization still led to problems that
are more realistic (and usually more difficult) than randomly constructed models.

The methods discussed in this paper generally converge fast locally, but not globally. For
1 http://math.nist.gov/MatrixMarket/
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the problems from Matrix Market, without a good initial vector, each method may take a long
time to arrive at the fast convergent region. Hence, we chose the initial vector as follows.
We computed the eigenvector corresponding to the required eigenvalue by the Matlab function
eig and perturbed it as the initial vector. For the nonsymmetric problems, we perturbed the
eigenvector by 10−2 ∗ rand(n, 1); for symmetric problems, the perturbation was set as 5 ∗ 10−2 ∗
rand(n, 1). By choosing the initial vector this way, the locally fast convergence behavior of each
method becomes clear to observe and easy to compare. Certainly in real applications it is not
easy to find a good initial guess without a good understanding of the models at hand, and one
may have to resort to restart techniques. The approach we took in this section was mainly
to verify the analysis we did in this paper, as well as to check the viability of the proposed
formulations.

As seen from the numerical results, the Jacobi-Davidson, IIDG and their simplified versions
(27) (28) do show locally quadratic convergence for nonsymmetric problems and cubic conver-
gence for symmetric problems. And the convergence appeared faster than the theoretic rate in
some cases, which is due to the subspace acceleration. For all the problems tried, JDm and
IIGDm behaved almost the same as Jacobi-Davidson and IIGD; as seen from the plots, the four
lines are often indistinguishable. This result also agrees with our analysis in Sections 4 and 5.

What needs to be explained more is the behavior of (16) and (17). Although for some
constructed models (16) and (17) appeared to be as competitive as JD and IIGD, for most of
the more realistic models they performed more slowly. The observed convergence behavior for
(16) and (17) is locally quadratic for symmetric problems and linear for nonsymmetric problems.
It may be super-quadratic or super-linear for each case because of the subspace acceleration.
The reason is that the derivation of the gradient and Hessian in Section 3 holds true for A = A∗,
whereas the gradient for the Rayleigh quotient of A (= A∗ is different and may not exist. We
point out that even though in the Matlab codes we did not require t ⊥ x at step 5(a) for (16)
and (17), adding this requirement may not help much if the correction equations are solved by
direct methods. The reason is discussed in Section 5. If this requirement is enforced at each step
of an iterative method for (16) and (17), then (16) and (17) essentially become Jacobi-Davidson
and IIGD, as seen from the proof of Theorem 4.1.

The Jacobi-Davidson equation (9) together with equations (16) and (17) led to the gener-
alized formulation (21), which led to the unified theory and the two simplifications (27) and
(28). The modifications are cheaper and simpler than the original formulations. Analysis and
numerical evidences show that they are as efficient as the original formulations. We expect that
preconditioned formulations based on (27) and (28) will be practical in actual applications.

The numerical results we present here evidently show that α = 1 in (21) is fundamental for
the efficiency of the methods we discussed in this paper. We hope that they also contribute to
the understanding and appreciation of the Jacobi-Davidson method and the IIGD method.

One problem related to Jacobi-Davidson and IIGD type methods is the possible slow conver-
gence when a starting vector is poor. Our unreported numerical tests show that with a random
initial vector many iterations may be needed to reach the fast convergent region (some of the
numerical results in [16] showed similar behavior). This suggests that efficient globalization
techniques may need to be developed. A practical approach is to apply a few steps of cheaper
Lanczos or Arnoldi iteration to get a better starting vector and then integrate restart during the
Davidson type outer iteration. Another approach is to modify shifts in the correction equations.
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This may require a better understanding on the difference between preconditioning for linear
systems and preconditioning for eigenvalue problems. [38] contains very interesting results in
this direction for the symmetric eigenvalue problem.
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Figure 1: Comparison of performance for nonsymmetric models: bwm200, ck400, pde225,
pde900.

7 Concluding remarks

In this paper we highlighted the value of subspace methods in eigenvalue computation. We
also emphasized the link between eigenvalue computation and optimization through the Newton
method. We derived a class of Newton updates for symmetric eigenvalue problems. From the
study of the Newton updates and their similarity to the Jacobi-Davidson method, we discovered
the generalized correction equation (21). From this generalized formula we arrived at simplified
forms of the Jacobi-Davidson method and the IIGD method. The modification (28) actually
halves the computational cost for the inner iteration of IIGD. We showed by extensive numerical
results that the simplified versions perform as efficiently as the Jacobi-Davidson and IIGD meth-
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Figure 2: Comparison of performance for nonsymmetric models: rdb968, rw496, rdb200, rdb450.

ods. Preconditioned forms based on (27) and (28) are expected to be efficient and practical for
large scale eigenvalue problems from real-world applications; this will be the subject of ongoing
research.
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